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1.0 INTRODUCTION 

The effects of material outgassing are of continuing concern to satellite designers since 
they are being asked to extend the usable lifetime of space satellites. The lifetime is most 
often directly related to contamination of spacecraft critical surfaces. During the past few 
years considerable progress has been made at AEDC in the area of contamination and 
optical property measurements. Both experimental and analytical efforts have been made in 
the determination of optical properties used in characterizing contaminants. 

The basic property required for determining optical contamination effects is the complex 
refractive index fi(v) = n(v) + ik (v), where n(p) is commonly referred to as the real part of 
the refractive index and k is the absorption index of the contaminant film. Knowing n(v) and 
k(p), one can calculate the transmittance or reflectance of any contaminant film substrate ° 
for a given film thickness through the use of Fresnel's equations within a mathematical 
model. Conversely, n and k can be theoretically calculated from a film-substrate 
combination provided transmittance data for two film thicknesses can be obtained and used 
within a mathematical model such that there are two equations involving n and k, the two 
unknowns. This was the technique utilized in determining n and k from transmittance 

measurements in Refs. 1 through 4. 

In measurements of contamination of any facility, a method for determining effects of 
contaminant as a function of contaminant thickness is required. Since most problems are 
associated with films a few microns thick or less, conventional techniques for thickness 
measurement do not apply. However, thin film optical interference provides an excellent 
technique for determining thin film thickness, e.g., film thickness from 0.25 to 25/an. This 
requires knowledge of the refractive index at some known wavelength. After having found 
the refractive index and thickness, there are techniques available for determining the 
complex refractive indices (n's and k's)" of the film. The subject of this report is the 
development of the mathematical models and computer programs required for 
determination of n and k from transmittance and reflectance experimental data. Computer 
programs TRNLIN and SKKTRANS are used for analyzing transmittance data of multiple 
films and a single film, respectively, whereas RENLIN and SKKRFL utilize reflectance data 

of multiple films and a single film, respectively. 

1.1 ANALYSIS OF TRANSMITTANCE MEASUREMENTS OF THIN FILMS 

When a beam of monochromatic light is incident upon a thin film deposited on a thick 

substrate, a reduction in the intensities of the transmitted and reflected beams is expected, as 
well as phase shifts of the latter two beams from that of the incident beam. At a given 
wavenumber, v, the reduction of beam intensities and the phase shifts depend, in part, upon 

the values of the film refractive index, nO,), and its absorption index, k(p). 

. 
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In one method of obtaining the complex refractive index ~(p) = n(p) + ik(p) of  dielectric 

films, the differences that changes in film thickness make upon the absolute transmittance 

are observed (Refs. 1 through 4). (The circumflex denotes a complex quantity.) Because only 

the transmittance is observed, at least two separate pairs of transmittance and thickness 

measurements are necessary at each wavenumber, ),, because two optical parameters of  the 

film are sought, n(p) and k(p). 

If, however, the phase shifts corresponding to each transmittance value are known, then 

the transmittance measurement for only one value of the film thickness is needed to find n(v) 

and k0,). Also, the assumption upon which the method is based, that the optical properties" 

of  a dielectric film are independent of film thickness, is not required. 

Section 2.0 describes a method for finding the optical constants from the transmittance 

spectrum of a single thin film, even when one cannot directly measure the change of  phase 
spectrum. In it is discussed the pertinent theory and the computer algorithms derived from 
them. Also shown are the results of  a preliminary investigation of  some existing AEDC 

transmittance data for 20-K cryofilms. 

1.2 ANALYSIS OF REFLECTANCE MEASUREMENTS OF THIN FILMS 

In this report, two methods are described for using reflectance measurements to find the 

optical constants of a thin dielectric film having parallel plane interfaces with a vacuum and 

a thick metal suhstrate. The reflectance is that of an infrared (IR) beam of radiation that is 

nearly normally incident upon the film in the vacuum. 

In the more common of the two methods, at a given wavenumber, the variance in the 
reflectance corresponding to changes in film thickness is observed. This procedure is called 

the "multiple-film thickness method."  If the reflectance measurements of at least two 

thicknesses of  the same film material are available, the experimenter can compute the 

complex index of  refraction, fi = n + ik, from a least-squares algorithm. 

At the heart of this method is the assumption that the optical constants n and k of  a film 

material are independent of the film thickness, at least over the experimental range of 

thickness values. This assumption does not hold at all for very thin metallic films (Ref. 5), 

and the slight dependence of n and k of N2/CO2 films on 20-K germanium (Ge) upon their 

thickness (Section 2.3.3) is demonstrated. 
i 

The second method finds n and k of a film from reflectance measurements of a single- 
film thickness, and the assumed independence of  n or k upon the film thickness is not 

necessary. With this method, one calculates the optical constants from a dispersion relation 

relating the modulus of the complex reflection coefficient with its phase. 

6 
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This "single-film thickness method" has worked successfully when applied to the 

reflectance measurements of a dielectric film deposited on a medium whose modulus of the 
complex index was lower than that of the film (Ref. 6), but no one has fully tested its 
applicability to other experimental situations. When analyzing the reflectance of a dielectric 
film placed upon a medium whose modulus of the complex index is higher, one runs into 
many more mathematical and computational difficulties (Ref. 7). The way these problems 

are attacked is the subject of Section 3.0. 

In Section 4.0 the multiple-film thickness method, which is incorporated in the computer 

program RENLIN, is described. 

2.0 EXTRACTION OF THE OPTICAL CONSTANTS OF A THIN FILM FROM 
TRANSMISSION MEASUREMENTS OF A SINGLE-FILM THICKNESS 

When determining the complex refractive index fi = n + ik of thin films, most 
investigators have used the observed dependence of transmittance upon film thickness. (See, 
for example, Refs. 1 through 4.) However, Maeda et al. (Ref. 8) have employed a Kramers- 
Kronig (KK) dispersion relationship which allowed a calculation of the n= and k-values from 
the transmittance spectrum of a single-film thickness. These authors used measurements of 
the transmittance relative to that at zero-film thickness. Unfortunately, errors most likely 
associated with estimates of quantities outside of the wavenumber domain of their data 

caused very noticeable distortions in their computed n- and k-spectra. 

Described in this section is a new subtractive Kramers-Kronig (SKK) algorithm which 
gives highly reliable n- and k-spectra from measurements of the absolute transmittance of a 
single, uniform thin film deposited on a uniform thick substrate. Not only can this program 
reduce the number of necessary experimental measurements, it is also capable of noting any 
differences in the optical constants of the film material due to changes in film thickness. 

2.1 THEORY 

Several authors (Refs. 1 through 5 and 8 through 10) have discussed the transmittance of 
a light beam through a thin film on a thick substrate where all surfaces are planar, parallel, 
and, ideally, infinite in extent (Fig. 1). For normal incidence of a semi-infinite light beam, 

the absolute transmittance T(p) at wavenumber J, is given by (Refs. 1, 5, and 8) 

T(p) = t*(P)[0') (1) 

where t is the complex normal transmission coefficient of the film (medium 1 in Fig. 1) and 
the substrate (medium 2) bounded by semi=infinite media 0 and 3. The asterisk indicates the 

complex conjugate of a complex quantity. 

7 
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Figure 1. Geometry depicting analytical model for a thin film formed 
upon a thick substrate. 
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-- I r23 12 i r210 12 exp ( -  4/~2d2)] 'A (2) 

where the complex Fresnel transmission coefficient tim and the reflection coefficients rim at  

the interface of the incident (j) and refracted (m) media are 

tim = 2nj/Cnj + nm) (3) 

and 

rj, , ,  = ( £ j  - + ( 4 )  

for normal incidence. In Eq. (2), ~012 represents the complex transmission coefficient for a 
beam going from medium 0, through the film of thickness dl, and into medium 2, the 
substrate, whose thickness de is much larger than the coherence length of the beam. The 
complex reflection coefficient ~210 refers to a beam incident upon the film within the 
substrate. These coefficients may be written as 

t012 ---- tOl[12 exp(iTidi)/[l + r01rt2 exp(2i'yId0] (5) 

^ ^ 

r21o = [r21 + rl0 exp(2i~tldl)]/[ 1 + r21r10 exp(2i'yldl)] (6) 

with 

/~2 = 2~'vk2 (7) 

and 

71 = 2~rvnl (8) 

Each coefficient accounts for the infinite number of reflections within the film which cause 
thin film interference effects. The quantity/~2 arises from the absorption of photons within 
the substrate, whereas "Yl describes the phase changes as well as the photon absorption from 
beams traversing the film. Note that the denominators o f  ~12 and r210 are equal because i'jm 

^ 

= - rmj by Eq. (4). 

Equations (1) through (8) show the dependence of the transmission coefficient t, and 
tilus the transmittance T, upon eleven parameters: wavenumber v, film and substrate 
thickness dl and d2, and the real and imaginary parts of rio, ill, n2, and fi3. One method of 
finding any unknown parameters is to vary at least one other parameter in a known manner 

9 
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so that the number of separate measurements of T at a given wavenumber is at least as great 
as the number of unknown parameters. For example, if only the film optical constants nl 
and kl are unknown, the transmittance T must be measured at least twice at every 
wavenumber using different known values of the film thickness dl (Refs. 1 through 4). 
Because closed-form solutions for nl and kl from Eqs. (1) through (8) are not possible, the 
authors of Ref. 1 utilized the nonlinear least-squares algorithm of Marquardt (Ref. 11) in 
computer program TRNLIN. 

Alternatively, the minimum number of experiments may be reduced to half that required 
for the previous method-if it is possible to measure t(v) instead of just T(v) at the desired 
wavenumbers. In this report, values of the optical constants nl and k] of the film are 
unknown and the nine other parameters in Eqs. (1) through (8) are known. By finding t at 
the wavenumbers of interest, experiments may be done on just one film thickness instead of 
making observations of at least two different film thicknesses when only T is obtained. 

The equation 

t(v) = [T(t,)] ¢~ exp[iO(,)] (9) 

can be used provided that ¢) (v), the change in phase of the transmitted light beam relative to 
that of the incident beam at the 0-1 interface, can be found. [Note that Eq. (2) implies that 
and t012 share the same arcus, or phase angle.] Direct measure of $ is difficult, expecially for 
transmittance. However, far-infrared asymmetric Fourier-transform spectroscopy can yield 
phase information for reflected beams (Refs. 12 through 15). 

Even if the phase ~(v) cannot be directly observed, it may yet be determined from any 
one of several equivalent relationships including the widely=used Kramers=Kronig (KK) 
dispersion relations, the Fourier-allied integrals (Refs. 16 and 17), and the Fourier-conjugate 
series (Ref. 18). In this work, a modified form of the KK dispersion equations known as the 
subtractive Kramers-Krohig (SKK) relations (Refs. 1 and 19) is used. Ahrenkiel (Ref. 19) has 
shown that errors associated with the extrapolations which must be applied to the data 
because of its finite extent are reduced in the SKK formulation. 

2.1.1 Determination of  Phase ¢) of 

Following Maeda et al. (Ref. 8), the model described in Eqs. (1) through (8) and pictured 
in Fig. 1, is the KK relation 

10 



2;,p fn d; , '  
+(v) + 2j~" = ] o  ";,": : , 2  + 2x,dl 

p -'|_ tn.T(y') d r '  + 2~rudt 
"x - u  ; , ,2_ ;,2 

A E D C - T R - 8 3 - 6 4  

(10) 

where j is an integer and P indicates that the Cauchy principal value of the integral is to be 
used. The value of the integer j is immaterial if t(v) is computed by Eq. (9). However, its 
value is not arbitrary and must be known where the SKK relations are used. 

2 . 1 . 2  D e r i v a t i o n  o f  t h e  S K K  R e l a t i o n  

If a t ,  = 'o the optical constants of  the film material under study are obtained from a 
prior measurement, then measurements of the optical constants at other wavenumbers may 
be based upon those a t ,  = vo in the following manner. A t ,  = "o, Eq. (10) is 

;,0 I :  ~ T(;,') 2 ~(uo) + 2mTr = - - - P  - - - - -  d , '  + 21rvodt 
1" ;, 2 _ ;,0 (11)  

where the integer m is not necessarily equal to j in Eq. (10). Combining Eqs. (10) and (11) 

gives 

~( ; , )  + 2j~" ~ ( ' 0 )  + 2mr 

;, ;,0 

,02 _ ;,2 = ell T(;,') 
P I 0 (;,,2 ;,2)(;,,2 ;,02 ) dl~' 

71" - -  

or 

p 
~ , )  + 2jTr = -  [~vo) + 2mTr] + 

;,0 

- ~ frt T ( ; , ' )  
;'(;,02~. v2) P I0 ( , '2  _ ;,2)(;,,2 _ ;,02 ) dv' 

To make ~0') a function of 1, ( i . e . ,  a single-valued relation), j must equal m because at z, 

= po, the last equation is ~(,0) + 2 j r  = O(P0) + 2rex. Thus. 

; ,  , ( ; ,0 2 _ ;,2) ® en T ( ; , ' )  
~(p) + 2mx = - - [ 0 ( , 0 )  + 2mlr] + P I d , '  

. ;,0 , o ( ; , , 2 _  ; , 2 ) ( ; , , 2 _  ;,0 2) 

(12) 

Usually the values of  n and k of the film at v0 are known from previous experiments. 
Equations (2) through (8) are used to compute t(vo) and then find ~(po) from 

11 
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~('o) = tan - I { Im[t(,o) ] /Re[  t( ,o)] } (13) 

where t an -  1 (corresponding to subroutine DATAN2 in FORTRAN IV) has a range interval 

of ( - 7r, ~r) and selects the value that lies in the same quadrant in which t0'0) lies when 

drawn in the complex plane. 

2.1.3 Determination of the Integer m in Eq. (12) 

In order to use the SKK relationship in Eq. (12), the integer m must be evaluated, which 

by Eq. (11) is 

vo p [~ fnT(p')  dp'  ~(vo) + r0dl (14) m 
2x2 "0 p,2 _ 1,0 2 2~ 

While the numerical evaluation of  the integral in Eq. (14) is straightforward, it is nonetheless 

tedious and lengthy because of the difficulties involved with calculating the contributions to 
the integral from the wavenumber domain near the singular point v' = ~'0. Fortunately, the 

integral term is almost always much smaller than the algebraic sum of the other two terms in 

Eq. (14) and may be safely approximated by the integral term. 

Let 
N 

fn TO') = tn To - j--~l aj ~,  - ~'j) 

in which To represents an average value of the absolute transmittance over those 
wavenumber regions far away from an absorption band, "N is the number of  significant 
absorption bands, pj is the wavenumber at the minimum transmittance of the jth band, and 

is the Dirac delta " func t ion ."  The constants aj are aj = fn iT0/T(~j) I, so now 

N 
fn TO,) = tn To + j~1 &t [T(vj)/To] 6(, - vj) (15) 

The integral of Eq. (14) becomes 

T(p') 
P ~ -- . . . .  dp' P - - - -  j,';'2:'p-02dv' " P S~ , f n T 0 -  j, 2_ 1,02 "t" S~ j ~=! fn[T(vj)~To]G(~,'- , j ) v  2 _ ,0 2 dJ" JO 

The first integral on the right-hand side is zero because fn T O is constant, and 

p l 2 _  p~ 

12 
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is zero. The second integral becomes 

N en[T(pj)/To] 

giving as an approximation to Eq. 14, 

V0 N en[T0/T(vj)] ~b0,o) 
m = ~ ' ~  j--~l vj 2 -  V0 2 2a" 

+ v0dl (16) 

In the present study, To is chosen to be T(p0). 

2.1.4 Estimation of the Complex Index of Refraction n of the Film 

Many times in the course of extracting the complex index of refraction fi(v) = n(p) 
+ ik0,) of the film from the value of the complex transmission coefficient t0'), it is found 
that several different pairs of n- and k-values will yield identical t(p) values when each pair is 
substituted, in turn, into Eqs. (2) through (8). In order to select the "bes t "  pair of values on 
physical grounds, it is necessary to resort to a cruder model of the experimental setup from 
which approximate values n and k are obtained. 

Near strong film absorptions, beams traversing the film are rapidly attenuated. As a 
consequence, nearly all of  the photons which have frequencies that are readily absorbed by 
the film, but nonetheless appear in the transmitted beam, have passed through the film just 
once. If all of the photons in the transmitted beam have traversed the film only once, and if 
I3/I0 is the observed ratio of the transmitted beam intensity I3 to the incident beam intensity 
I0, an estimate of k is (Ref. 1) 

k = en [[~3/fioITs/(I3/Io)]/(4Tpdt) (17) 

where the transmittance Ts of the bare substrate is 

and 

Ts = t*sts (18) 

t, = It231~2 exp(-~2d2) / [ l  - [r23121 r20l 2 exp(-4/~2d2)] ~ (19) 

[Eq. (19) can be heuristically obtained from Eq. (2) by elimination of the " 1 "  subscript 
denoting the film.] Often one can put measured values of Ts into the' relation indicated in 
Eq. (17). 

13 
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Estimates of n are based on an assumed film absorption bandshape as a Canchy 
(Lorentzian), Gaussian, Voight, or similar profile. Peiponen (Ref. 20) has derived an 
expression for n because of  an absorption band having the Cauchy form 

k(u)  = kmax/ [1  -I- ( 4 / 7 2 ) ( , -  Vl) 2] (20) 

Here, kmax is the value of k at p = ~,], where p~ is the wavenumber at the maximum 
absorption and ~, is the difference between the wavenumbers at the half-maximum points, 
i.e., 3' is the full-width-at-half-maximum intensity (Fig. 2). 

If all N-bands in a spectrum are assumed to have the Cauchy shape of Eq. (20), an 

approximate expression for n is 

N kmaxj ~PLj (V -- Pj)(PLj -- Pj) (21) 
n(p)  no + 

j~ l  ~Lj2(~ - 0 2  + ~2(~Lj - 0 2  

Here, no is the contribution to n because of absorption outside the wavenumber domain of 
the data. For the jth band, pj is the wavenumber at which the maximum absorption, kmax j, 
occurs, and 

PLj = Vj -- "tj/2 (22) 

is the smaller half-maximum intensity wavenumber, where "Yi is the difference between the 
larger half-maximum intensity wavenumber and ~'Lj. In this study, no was equated with 
n(~o), and the other parameters were estimated in Eq. (21) from the approximate k-spectrum 
created by the application of Eq. (17) to all measured T(p) values. 

2.1.5 Extrapolations of the Data 

A major problem in using the SKK relation for ~0') in Eq. (12) is that the integral over 
the wavenumber in Eq. (12) has the limits zero and infinity. It is necessary to extrapolate the 
data to these end points, and one now investigates the asymptotic behavior of fn T(v) for the 
two limits v --* oo and v -- 0. 

As v approaches infinity, the electrons in any material become more nearly " f ree , "  and 
the dielectric constant may be written (Refs. 21 and 22) as ~J,) = fi2 (p) _- 1 - Vp2/p 2, 

which means 

where 

rl(~,) ~ - -  Up2/(2J' 2) (23) 

Up = o~p/(2~c) = 2~e2/(mec) (24) 
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Wp is the "plasma frequency", ~ is the number density of frlee electrons, me is the mass of  a I 
free electron, e is the electronic charge, and c is the speed of light in vacua. It follows from 
the relations given in Eqs. (1) through (8) that as i, approaches infinity, 

yielding 

and, finally, 

tim(P) m l + (rpm 2 - ~'¢j2)/(4v2) 

rjm(P)-~ (/~pm 2 -- Ppj2)/(4p2)---- t im(/0-  1 

I o, l = t~o12 * tol2 = [ I  + pp22/C4v 2) +...p 

Ir2lo] 2 = r2,o* r2,o - [2ppl2CtSpl2 - Pp2 2) + Vp2 4 + . . - l / ( 1 6 r 4 )  

A 

T = t* t ~ 1 - pp22/(Sv 4) + . . .  or, ?n T ~- -~,p24/(Sf t) (25) 

Here, ppj is the critical "plasma wavenumber" defined in Eq. (24) for the jth medium, and 
rpo = Pp3 = 0 because in this experiment these media are essentially vacuums. 

As v approaches zero, for dielectrics (Refs. 21 and'22), 

= = 

a constant, whereas for conductors 

~(v) = t l2(p)= 2ia 
C;' 

(26) 

(27) 

where ~ is the conductivity for constant currents. For the dielectric media of Fig. 1 from Eq. 
(26), 

fn T(v) ~- ?n To (28) 

becomes a constant, as r approaches zero. 

Equations (25) and (28) are used to calculate the end contribution, A and B, of the 
integral inEq.  (12). If J't is the smallest wavenumber in the data domain, and assuming 

' (29)  en T(v) --- i'n T(re) 
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the contribution A to the integral over the interval (0,:,t) is given as 
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" ' ÷ '  I) = ~  ~ ; - ~ - ; _  ~ I - , o  , e -  ,o (30) 

Likewise if Vu is the greatest wavenumber in the data domain, assume, following Eq. 

(25), 

fn TO,) = (Vu4/V 4) ~n T(vu) (31) 

in the interval (;'u, oo). The end contribution B over (Vu, ao) is 

B = 
,(,,o 2 _ ,,2) 

,ff 

fn T(,,') dr' 
P Jv  ( , , , 2  _ , ,02)(, , ,2 _ ,,2) 

V(p0 2 _ ,,2) ,,u 4 fn  T(vu) 

p02 + ,,2 ! 
+ 

,,u ,,04 ,,4 3 ,,u 3 vo 2 ,,2 

' 'u+-'°1) 
4" p04(v02 _ p2) Vu ,,0 

I l l  

4- ,4  ( , 02  _ ,2)  ~1 ,,u , 
/ J I  

2 .2  C O M P U T E R  P R O G R A M  S K K T R A N S  

The FORTRAN IV computer program called SKKTRANS extracts the optical 
parameters n(p) and k0,) of a film material from the absolute transmittance data of a single 
fixed film and substrate surrounded by a vacuum. The experimental geometry was assumed 
to be that of Fig. 1 with the physical description contained in Eqs. (1) through (8). It was 
further assumed that the user would supply a pair of n- and k-values which had been 
obtained in a separate experiment at v = v0, a wavenumber that is not at, or next to, the 
ends of  the wavenumber domain of the data. In this program, then, fi0 = fi3 = 1 by 
assumption, and the user must enter the rest of the parameters: film and substrate 

thicknesses d~ and d2 and the refractive index n2 of the substrate. 

17 
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The program SKKTRANS is divided into three main segments, " M A I N , "  
"KAMKON," and "NLNSYS." In MAIN, the computer reads the title card, job 
parameters, and the data, which are either on cards or in temporary direct-access storage if 
the data were originally on tape. (The program reads tape data and places it into storage in 
the jobsteps prior to MAIN.) The data need not be equally spaced in wavenumber. 

The second and third parts of SKKTRANS calculate the optical constants of the film, 
one wavenumber at a time. KAMKON calculates t(p) and passes it on to NLNSYS which 
finds nO,) and k0,). 

2.2.1 Program Segment KAMKON 

In KAMKON, the computer recovers the necessary phase information by computin~ the 
change of phase ~(p) of the transmitted beam using the SKK relation [Eq. (12)] and the 
integer value for m that is closest to the right-hand side of Eq. (16). The computer then finds 
the value of the complex transmission coefficient t(p) using Eq. (9). 

The computer algorithm in KAMKON which evaluates the SKK integral of Eq. (12) is 
very similar to algorithms in other SKK programs which previously were supplied to AEDC 
(Ref. 1). KAMKON performs the integration by using Simpson's rule except near the 
singular points J,' = ~'0 and p' = J,, or whenever the wavenumber separations between three 
successive data points are unequal. In these exceptional cases, the numerator of the 
integrand, en T(p), is approximated by a quadratic function of J, fitted to the data point at 
the wavenumber of interest and the two surrounding data points. The computer uses an 
analytical expression to evaluate the contribution to the integral for these three data points 
and computes the end corrections from Eqs. (30) and (32). 

2.2.2 Program Segment NLNSYS 

NLNSYS uses the value of [0') that is found in KAMKON and calculates the film optical 
constants n(v) and k(p). It is not possible to solve for the complex refractive index nl in Eqs. 
(2) through (8), and, consequently, NLNSYS incorporates a nonlinear iterative interpolation 
scheme very similar to Marquardt's nonlinear least-squares algorithm (Ref. I l). However, 
the converged values of the optical constants which the present algorithm provides cannot 
meet the least=squares criterion because the algorithm employs two known quantities, the 
real and imaginary parts of t0'), to find two unknown quantities, n0,) and k(p). 

2.2.2.1 Selection of the "Best" Pair of Optical Constants 

Always from strong absorptions, the algorithm in NLNSYS almost always converges to 
the "best" pair of n- and k-values, when the initial guesses of these values are the 
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corresponding "bes t"  values from the calculation just prior to the present one. In spectral 
regions far from strong absorptions, the "bes t"  pair of values is the pair in which n is not 
too far from unity and k is close to zero. The other pairs of n- and k-values which satisfy 
Eqs. (2) through (8) are usually not close to the "bes t"  pair of  values. 

If the absorption is strong at the wavenumber of interest, however, one may not be able 
to readily distinguish the "bes t"  pair of n- and k-values from the other possibilities. In this 
case, NLNSYS uses at least eleven different initial guesses for n and k, and usually finds 
more than one distinct pair of converged n- and k-values. NLNSYS uses the approximate 
values of n and k, given in Eqs. (21) and (17), respectively, to help in the selection of the 

"bes t"  pair. 

Theoretically, if the absorption band has the Cauchy, or Lorentzian, shape of Eq. (20), 
the n-values reach a maximum very near the wavenumber v -  at the lower half-maximum 
point, and a minimum very near the wavenumber p + corresponding to the upper half- 
maximum intensity point (Refs. 20 and 23). Thus, in the wavenumber interval (~,-,  ~, + ) n 
should increase monotonically with increasing s, and vice versa (Fig. 2). 

Experimentally, measurement errors, non-Cauchy bandshapes, and the use of  
approximate n- and k-values often cause shifts in the location of the extremal values of n. 
Therefore, expect to find the experimental maximum n-value within the interval 0 ' - - 6 ,  
p_ +~ and the minimum within the interval (v+ - 6, v+ + b'), where 6 is typically 3 cm-1 or 
so. Within the two intervals, the n-values should not be rapidly changing, and NLNSYS 

• chooses as "bes t"  the pair of  n- and k-values closest (in the n, k-plane) to the n- and k-values 

found in the last calculation. 

Outside of the two wavenumber intervals mentioned above, NLNSYS usually picks as 
the "bes t"  values the pair closest to the approximate n- and k-values for that wavenumber. 
The only exceptions occur when the wavenumber of  the calculation is within the interval 
(p_ +a, v+ -6), and the n-value chosen as "bes t"  by the above criteria is less than 0.9 of  the 
n-value found at the larger wavenumber of the last calculation. (In SKKTRANS, the 
calculations proceed in descending wavenumber.) Because in this interval the n-values 
should increase monotonically with decreasing wavenumber, NLNSYS chooses as "bes t"  
the pair having the smallest n-value that equals or exceeds 0.9 of the best n-value from the 

previous i:alculation. 

2.3 PRELIMINARY RESULTS FROM SKKTRANS 

At the time of this writing, some minor debugging of SKKTRANS may still be necessary. 
However, tests have been made on the reliability of the SKK and interpolation algorithms 
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using a theoretical transmittance spectrum. The effects of  varying the film thickness, using 
some existing AEDC cryofilm data, also have been noted. 

2.3.1 Test o f  the SKK and the Interpolation Algorithms 

A theoretical CO2 cryofilm transmittance spectrum was used to test the algorithms in 
SKKTRANS. This transmittance spectrum, extending from 700 to 3700 cm - l ,  was 

computed by substituting the n- and k-values of  pure solid CO2 cryofilms at 20 K (Ref. 24) 
into Eqs. (I) through (8). This spectrum was then processed by SKKTRANS in an effort to 
recover the original n- and k-values. 

Note that the SKKTRANS did not simply reverse the calculation process involved in 

computing the test transmittance spectrum. This can be done only when t is known instead 

of  T. SKKTRANS does compute t, by first finding ~, and then it calculates the optical 

constants in an iterative scheme that is essentially a trial-and-error method. Also note that 
the computation of  n and k at a single wavenumber requires the transmittance values at all 

wavenumbers included in the data because of the SKK relation for ~ [Eq. (12)]. 

In essence, the validity of the numerical approximation of  the SKK relations [Eqs. (12), 

(13), (30), and (32)] was tested. Figure 3 shows the excellent agreement of the SKKTRANS 

n-values with the original n-values even near the intense ~'3 band of 12co2. Here, the complex 

refractive index of the film is the least-squares value ~ = 1.2220 + i0 at the wavenumber Vo 

= 2700 c m - l ,  and the CO2 film thickness is taken as 2.071/an. The data points included in 
the SKK algorithm extend from 710 to 3690 c m -  t and are spaced every 10 c m -  l, except near 

significant absorptions. For this film and all others discussed in this report, the substrate is 

20 K germanium 4 mm in thickness with a complex index of  refraction n2 = n s + i0 where, 
correcting Eq. (14) of Ref. 1, 

and 

ns(p) = A + BL + CL 2 + Dv -2 

A = 3.880 

B = 3.91707 x 10 -9 cm 2 

C = 1.63492 x 10 -1~ cm 4 

D = - 600 cm 2 

E . =  5.3 x l0 s c m  4 

L = ( p - 2 _  2.8 x 10 -gem2) - l  

+ El, -4  

(33) 
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Differences between the SKKTRANS n-spectrum and the original are discernible only near 
the relative extrema of the n-spectra. The exceptionally close agreement of the SKKTRANS 
k-spectrum with the original is evident in Fig. 4, and it was concluded that the SKK model 
and the approximations can faithfully reproduce the original spectra. 

Figure 3 also includes a plot of the approximate n-spectrum (NAPPROX) computed 
from Eq. (21). These approximate values vary widely from the other two spectra because the 
P3 band of 12co2 is highly asymmetric and does not fit the single Cauchy (Lorentzian) 
bandshape assumed in the calculation of the approximate n-spectrum. Nevertheless, the 
criteria discussed in Section 2.2.2.1 for choosing the "best" n- and k-values work well even 
in this case of a poor approximation of the n-spectrum. 

On the ]3ther hand, observe in Fig. 4 the good agreement of the approximate k-values, 
from Eq. (17), with the other k-spectra. As expected from the assumptions in the derivation 
of Eq. (17), this agreement is relatively closer as the k-values increase. The results are in 
contrast to the conclusion of Maeda et al. (Ref. 8), that the approximate, or 
"experimental", k-values of Eq. (17) are highly distorted from the " t rue"  KK or SKK 
values contained in Eqs. (10) and (12). 

2.3.2 Variation of ~Vo) + 2m~- with Film Thickness 

When Eq. (16) was derived, it was assumed the Cauchy principal value term in Eq. (11) 
was small enough to make ~(P0) + 2 m~- nearly linearly dependent upon the film thickness 
dl. [~(v0) + 2 m~- is the phase change of the radiation in the transmitted beam having 
wavenumber J'0.] SKKTRANS determines ~b(v0) from Eq. (13) and uses Eq. (16) to find m. 
Thus, a plot of the SKKTRANS values of ~0'0) + 2 m~- versus film thickness is an 
independent check of Eq. (I 1) and the assumption of linearity. 

In Fig. 5 are seen the ~(P0) + 2 m~- values found by SKKTRANS for 15 different 
thicknesses, ranging from 0.2633 to 4.476 ~m, of films formed when a gaseous mixture of N2 
(74.7 mole percent) and CO2 (25.3 mole percent) impinges on a 20-K germanium substrate 
(Ref. 1). To a good approximation the plot is linear and passes through the origin, and the 
regression line (dashed line) through the data has a slope of 1.69967 ~m- I. In Eq. (11), the 
value of 2 l"v0(v0 = 2144 cm-1) is 1.34711 /an-I  which has a relative difference of 20.7 
percent with the experimental slope. Because the authors of Ref. 1 found the film 
thicknesses from the interference pattern of He-Ne laser beams reflected from the film, it is 
possible that a systematic error entered the thickness measurements. In this instance, 
increasing dach of the measured thickness values by a factor of 1.69967 ~m- 1/1.34711 #m- l 
= 1.26171 would cause the experimental slope to be identical with the theoretical slope, 2 
rp0. However, other tests (Section 2.3.3) do not support the above changes in the 
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thicknesses, nor does the experimental error estimated by the authors of  Ref. 1 allow so 

great a discrepancy. At any rate, it appears, at least for N2/CO2 films, that 2 xv0dl is the 

dominant term of Eq. (l I). 

2.3.3 Changes in the n- and k-Spectra as a Function of Film Thickness dl 

As the thickness of  a film changes, the transmittance spectrum changes in appearance. 

However, if it is assumed that the films are uniform and homogeneous in composition 

regardless of  thickness, two films of the same material, but having different thicknesses, 

should yield the same n- and k-spectra. This assumption is the basis of the least-squares 

method of analyzing transmittance with thickness to yield the film optical constants. 

However, the assumption is not true for very thin metal films (Ref. 5). Program 

SKKTRANS allows one to examine each film thickness separately. 

Figures 6 and 7 present the optical constants of the N2/CO2 films discussed in Section 
2.3.2. For each thickness, the data points were spaced 2 c m -  ~ apart and extended from 602 

to 3750 c m - i .  The n0,0)- and k(p0)-values required in the SKK algorithm were 1.2610 and 

zero, respectively, and were measured at p0 = 2144 c m -  ~. 

The dashed line in Fig. 7 represents the values of k found in Ref. 1 by a least-squares fit 

of transmittance to thickness. The authors of Ref. l computed values of n by an SKK 

analysis of  the least-squares k-values, and the dashed line in Fig. 6 indicates these n-values. 

These n- and k-spectra are nearly identical to those of the smallest thickness (0.2633 ~m) 

even though the least-squares analysis used the transmittance data of 15 different film 

thicknesses ranging from 0.2633 to 4.4761 ~m. This is because the transmittance at a given 

wavenumber decreases approximately exponentially with increasing film thickness, and the 

least-squares criterion is biased in favor of the larger measurements. For the N2/CO2 films, 
for example, the measured absolute transmittance at 2350 c m -  1 was approximately 0.3 for a 

film 0.2633-pxn thick, whereas the 1.3165-~m film had a value of about 0.01. If the least- 
squares procedure had achieved nearly the same absolute error (e.g., 0.01) between the 
computed and measured transmittance values of these films, the relative error would be 

about 30 times greater for the thicker film. This means that one can disregard transmittance 

measurements that are near zero when employing the least-squares method. 

There are also reasons to discount nearly-zero transmittance measurements when one 

makes a KK or SKK analysis. In Figs. 6 and 7 only the SKKTRANS n- and k-spectra of  the 

smallest five thicknesses are shown because the.peak absorptions in the ten larger thicknesses 

are so intense that, because of instrumental drift, the Fourier-transform spectrometer 
measured the smallest absolute transmittance to be very slightly negative. In cases of this 

type, a new "baseline" for the transmittance spectrum can be established by adding a very 
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small constant to every original transmittance value so that the new transmittance spectrum 

will not have any negative (or zero) values. 

It is not clear, though, what the additive constant should be. The establishment of the 

criteria for choosing the constant is very important because relatively small adjustments of 

the additive constant can cause variances in the smallest transmittances of several hundred 

percent, or more, and can create very noticeable differences in the n-spectra computed by 

SKKTRANS. Perhaps it is possible to find a suitable additive constant from "sum rules" 

akin to those developed by Smith and Manogue (Ref. 25) for reflection spectroscopy. 

Note in Figs. 6 and 7 that both the n- and the k=spectra of N2/CO2 vary slightly and in a 

nonrandom manner with film thickness. The same effect occurs even more dramatically in 

thin f'flms of  850"/0 N2/15g/o NH3, 91°10 CO/9e/oH2 O, and 93e/0 Ar/7e/o H20 condensed onto 

a 20-K germanium substrate (Ref. 1). Only further investigation can uncover whether this 

trend is a real physical effect of  these films, or a computational artifact due to a systematic 

error in, e.g., the determination of the film thickness, or inadequacies in the model. As a test 

of the effects of  a systematic error in film thickness, the optical constants of the N2/CO2 
films were recomputed using the SKKTRANS thickness values which were 1.26171 times 

those given in Figs. 6 and 7. (In Section 2.3.2, it was found that 1.26171 was the ratio of the 

observed-to-theoretical slopes of the plot in Fig. 5.) Even though the new spectra were not 

identical to the original, the new spectra showed, to the same degree, the original variance in 
value with film thickness. At least in this instance, the variation of n and k does not seem to 

depend on film thickness errors. These examples illustrate the usefuiness of obtaining the 

optical constants of individual films, especially for films such as those containing hydrogen- 

bonded molecules whose optical properties may depend on film thickness. 

2.4 USING PROGRAM SKKTRANS 

SKKTRANS can be used to extract the optical constants of  a uniform thin film from 

absolute transmittance measurements of  the film on a thick substrate surrounded by a 
vacuum. Experimentally, an absolute transmittance measurement is the ratio of  the 

transmitted beam intensity, at a given wavenumber, to that of the incident beam. 

2.4.1 Program Parameters 

The present version of SKKTKANS calculates the refractive index of the 20-K 

germanium substrate, n2 = n g ,  from Eq. (33). One must enter into SKKTRANS the film and 

substrate thicknesses and the optical constants of  the film at 1, = P0, a wavenumber that is 

not at one of the endpoints of  the transmittance data. 
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The program also requires one to supply the wavenumbers within the data domain at 
which to start and stop the calculations and to specify how many of the data points used in 
the SKK algorithm are to be skipped between successive determinations of the film optical 
constants. The initial guesses of n and k for the first calculation and the maximum number 

of iterations in the interpolation procedure must also be given. 

If the data are on a tape or disk, SKKTRANS constructs a new data set from the original 
data. The smallest and largest wavenumber must be entered in the new data set and the 
number of original data points on the tape or disk that are to be skipped when the p~ogram 
picks out the data points to be included in the new set of data. Additional program 
parameters enable SKKTRANS to write the computed n- and k-values onto a tape. Please 
note that appropriate changes in the job control language (JCL) must be made for use of 

tape or disk volumes. 

The remaining input parameters have the information needed to find, in the approximate 
k-spectrum generated by Eq. (17), the wavenumbers at the peak and the two half-intensity 
points for each major film absorption band. At a wavenumber near a large absorption, 
SKKTRANS makes multiple optical constant computations and, subsequently, picks the 
"best" values in the manner described in Section 2.2.2.1. Empirically it was found that 
absorptions whose peak k-values are a few tenths or less can be ignored. 

2.4.2 Spectra with Overlapping Bands 

In the case of two or more large overlapping bands, one must be careful in the estimates 
of the peak wavenumber and of the full-width-at-half-maximum intensity of each band. 
This is necessary because, for each band, the search for the wavenumbers at which these 
points occur, in the approximate k-spectrum, is within the wavenumber domain that is 
centered at the estimated peak absorption wavenumber and extends on either side of it to the 
estimated full-width-at-half-maximum intensity. One should not allow the search for these 
wavenumbers for a band to extend into a wavenumber domain where absorptions 
attributable to other bands are noticeable. A complete listing of the program input 
parameters and their formats appears at the beginning of the large MAIN segment of 

SKKTRANS. 

3.0 DETERMINATION OF THE OPTICAL CONSTANTS OF A DIELECTRIC 
THIN FILM ON A METAL SUBSTRATE FROM REFLECTANCE 

MEASUREMENTS OF A SINGLE-FILM THICKNESS 

In the past, most observers have used reflectance measurements of films to compute the 

optical constants n and k of a film material by noting, at a given wavenumber v, how the 
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reflectance varies with film thickness. (See, for example, Section 4.0 and Ref. 26.) This 
method is especially useful when the optical properties of the film material are known not to 
change with film thickness, and the reflectance data are available for at least two values of 

the film thickness. 

If, however, the optical constants depend on film thickness, or when reflectance data for 
just one film thickness are available, one must find the constants in another way. In Section 
2.0, a dispersion analysis of the transmittance of a single dielectric thin film on a thick 
substrate is given which yielded the n- and k-spectra of the dielectric and showed that the 
n-and k-spectra of N2/CO2 films, on 20-K Ge, vary in a nonrandom way upon the film 
thickness. At the core of  that analysis was the calculation of the phase change 0 suffered by 
the transmitted beam using a dispersion relation between ~ and the modulus of  the complex 
transmission coefficient. The phase change is of interest for its own sake, and the recovery 
of the phase change from intensity data constitutes the phase retrieval problem (Refs. 27 

through 30). 

A corresponding analysis of reflectance data has some complications not found in the 
transmittance analysis, primarily because the reflectance can be zero under certain 
conditions, whereas in principle the transmittance can never be. The possibility of zero 
reflectances introduces additional terms into the usual dispersion relations which increase 
the computational effort needed to use the single-film thickness method (Refs. 7 and 31 

through 35). 

3.1 THEORY 

Figure 8 depicts the geometry of the theoretical model. A semi-infinite beam of 
monochromatic-radiation is normally incident, in a medium of index h0 upon a thin film, 
index nl. The film is sandwiched between the semi-infinite media having indices n0 and n2, 
and the interfaces are plane-parallel and infinite in extent. 

In a typical experiment, the incident medium is very nearly a vacuum (n0 ffi 1), and the 
medium of index fi2 is a metal substrate. One is able to consider the metal substrate as semi- 
infinite because In2[ is much greater than unity for IR and visible radiation, and, hence, 
essentially no reflected waves exist in the metal substrate if it is sufficiently thick. 

The geometry of a typical experiment usually does not allow the detection of beams that 
are actually normal to the interfaces, and a researcher must use beams that have nearly 
normal incidence. If the maximum angle of incidence of a ray in the beam is less than 10 deg 
or so, an observer frequently does not have to distinguish between the components of the 
beam which are parallel to the plane of incidence and those which are perpendicular to it 

(Ref. 36). 
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Figure 8. Geometry depicting the analytical model for a thin film sandwiched 
between two semi-infinite media. 
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3.1.1 Absolute Reflectance Ro12 

At a given wavenumber, the ratio of the intensity of the reflected beam to that of the 
incident beam is the experimental absolute reflectance R012. Theoretically, the model in Fig. 
8 gives Rol2 as 

Rol2( ) ^* = r012(P)r012(u) (34) 

where 

r012-- [rol 4- r12 exp(2i'yidl)]/[l + to, r12 exp(2i'yldl)] (35) 

is Eq. (6), if the " 0 "  and " 2 "  subscripts are interchanged. At normal incidence, the complex 
reflection coefficient rim for radiation incident in medium j at the interface with medium m 
is given in Eq. (4), "~l is defined in Eq. (8), and dt is the film thickness (Section 2.0 and Refs. 
5, 7, 37, and 38). Please note that some authors define rjm as the negative of  the right-hand 
side of  Eq. (4), and the two definitions differ by a phase of + ~-. (For examples, see Refs. 6, 
7, and 25.) 

3.1.2 Relative Reflectance R 

In many experiments, it is often easier to measure the reflectance of an optical system 
relative to a standard reflectance rather than its absolute reflectance. The reflectance R of 
the vacuum=film-metal system relative to the vacuum-metal system reflectance is defined as 

IR IR/I0 R012 
R - - - (36) 

IRS IRS/I0 R02 

IR and IRS are the reflected beam intensities from the vacuum-metal systems, respectively, Io 
is the incident beam intensity, and R02 is the absolute reflectance of the vacuum-metal 
system. Note that R can be greater than unity. Values of the complex index ~2 of the metal 
can come from measured values of  R02, and how this might be done is illustrated in the next 
two sections. 

3.1.3 Absolute Reflectance Re2 of  the Vacuum-Metal Interface 

For the case of  a bare metal substrate, the theoretical model yields 

(37) 
i 

for the absolute reflectance at the vacuum-metal interface, and the corresponding complex 
reflection coefficient is 
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702 = (rio - + (38) 

In an experiment, an observer often fits the experimental R02 values to a function of the 
wavenumber, such as a polynominal. For instance, Arnold et al. (Ref. 26) found 

Ro20') = 0.939 - (4.25 x 10 -5 cm)J, ( 3 9 )  

to be a good fit to the empirical data for the absolute reflectance of a vacuum-aluminum 
interface in the infrared. There are, however, certain theoretical restrictions on the 
mathematical form of R02(P), which Eq. (39) does not meet, and these are taken up in 

Section 3.2.2. 
/ 

3.1.4 Evaluation of n2 from R02 

A researcher must know the complex refractive index of the metal, fi2, before the film 
index fit can be found from reflectance data because it is necessary to compute the reflection 
coefficient of  the film-metal interface, ~'12, in any scheme for getting nl. [See Eqs. (4) and 
(35).] One method for obtaining the metal index n2 is through a Kramers-Kronig (KK), or a 
subtractive Kramers-Kronig (SKK), dispersion analysis of the observed vacuum-metal 
reflectance spectrum, Ro2(v). Two computer programs, KKR and SKKR, have been written 
which, respectively, perform KK and SKK analyses upon a reflectance spectrum to extract 
the optical constants of  the reflecting medium. 

Another way to calculate the complex index n2 of the metal comes by solving Eq. (38) for 

n2, which yields 

n2 ffi no(l - roz)/(1 + roz) = no [1 - R~/i exp(iS02)]/[l + 1 ~  exp(iSo2)] (40) 

where, from Eq. (37), 702 is 

ro2 = [ro2l exp(iSo2) = Ro~ cxp(i8o~ (41) 

The phase 8o2 is the difference between the phase of the beam reflected at a vacuum-metal 
interface to that of the incident beam at the interface and is often difficult to determine 

empirically. 

If 802 cannot be measured directly, then good estimates of it can frequently be made. 
Because In21 is much greater than In o I, which is unity for a true vacuum, the complex 
reflection coefficient ro2 is nearly - 1  making 802 approximately equal to ~r. This has led 
many authors, Arnold et al. (Ref. 26), for example, to simply set 8o2 to 7r throughout their 

data range. 
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/302 is not a constant function of  the wavenumber, and, furthermore, if/302 is set to ~r and 

to unity, Eq. (40) gives 

n2 = n2 + ik2 = (1 + 1~) / (1  - R~2 ) + i0 (42) 

Physically, this means k2 of the metal is zero, and the metal medium would not absorb any 
of the radiation impinging upon it! In fact, a metal is a very highly absorbing medium over 

most of the IR and visible spectrum, and, for metals such as aluminum (Refs. 39 through 

42), k2 often exceeds n2. At 8330 c m -  l, for instance, bulk A1 has the optical constants n2 

= 0.78 and k2 = 9.16 (Ref. 41). 

The major  problem in using Eq. (42) as an estimate of  fi2 is that sometimes this can 

introduce sizeable errors in the value of the reflection coefficient at the film-metal interface 

r12 ----- (111 - -  I12)/(1"11 + i'12) ---- 1 12l exp(i/3t2) (43) 

with 

/312 = t a n - t { [ ( n  + n2)(k - k2) + (n2 - n)(k + k2)] 

/ [ ( n  2 - n~  + (k 2 - k~)]} (44) 

and nt = n + ik for the film. If k2 is set to zero, so that B02 is a- and Eq. (42) gives n2, the 
phase change upon reflection at the film-metal interface,/312, becomes a ficticious value 

/3'12 = t a n -  t [ 2 n 2 k / ( n  2 - n~ + k2)] ( 4 5 )  

In the spectral regions where the modulus of the film index of refraction, In1 I, is much less 

than that of the metal, Ill2 I, both/312 [Eq. (44)] and/3~2 [Eq. (45)1 are approximately a- in 
value, and we can safely use Eq. (42). This situation is often encountered experimentally, 

and some authors set/312 as well as/3o2 to ~" throughout their data domain (Ref. 26). 

However, if either of the optical constants of  the film of the metal become comparable in 

magnitude to one of  the metal constants, some larger errors are possible. Suppose k and k2 
are approximately equal in a region of  strong absorption by the film, but n is very small 

compared to n2. The true value of/312 is, from Eq. (44), /312 ~= t a n - ' [ 2 k / ( - n 2 ) ] ,  which 

means/512 is about 0.578 a- for the case k = k2 = 2n2. In contrast, if/3o2 is set to a-, and thus 
has a fictitious k2 value of  zero,/312 from Eq. (45) is about tan "- m [2nzk/(k 2 _ n~)], giving a 

fictitious value of about 0.295 a- when k -- 2n2. The discrepancy between these two values of 

/312, 0.283 ,r, is large enough to cause a noticeable error in 312 and r0~2, if Eq. (42) is used to 

compute n2. Fortunately, instances in which k and k2 are comparable rarely come up except 

in spectral regions where the film has strong absorptions. 
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There is a greater chance of error if one sets/~12 as well as/~02 to 7r. In the above example, 

for instance, the true value of/~12 is closer to Vz f than ~-. 

3.1.5 Multiple-Film Thickness Method 

The model depicted in Fig. 8 and presented in Eqs. (34) through (44) is the basis of the 
method for finding the film optical constants at a given wavenumber by noting the change in 
the relative reflectance R as the film thickness varies. This multiple-film thickness method is 
valuable for films which do not change their optical properties with thickness and is 

discussed more fully in Section 4.0. 

3.1.6 Single-Film Thickness Method 

In cases where the optical constants of the film change with its thickness, or where there 
are reflectance data for a film material at only one thickness, one cannot apply the multiple- 
film thickness method of Section 4.0, because one seeks n and k at a given wavenumber and 

only one experimental piece of information exists, namely, R. 

A second piece of information can be supplied from the use of any of the appropriate 
dispersion relations between the modulus of a complex quantity and its phase (Refs. 16 
through 18, 22, and 43). Toll (Ref. 44) has shown that postulating the existence of dispersion 
relations for a linear system is equivalent to assuming that strict causality ("no output before 

input") holds for the system. 

In the present instance, one can find the modulus of the reflection coefficient rot2 of the 
vacuum-film-metal system directly from experiment by using 

where 

I~0t21 = R ~  = (R R02) v2 (46) 

r012 = I r0121exp(i0) (47) 

where 0 is the phase change upon reflection at the vacuum-film interface for a beam incident 
in the vacuum. The phase change 0 is what is sought from a dispersion relation so that 
optical constants of the film, n and k, can be extracted by inversion of Eq. (35). " 

Lupashko et al. (Refs. 6 and 7)have' derived the Kramers-Kronig (KK) dispersion 
relations for the special case in which a planar thin film is sandwiched between two 
transparent semi-infinite media. The following derivation of the KK relations of the 

vacuum-film-metal system is along the lines of Lupashko et al. (Ref. 7). 
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3.1.7 Derivation of the Kramers-Kronig (KK) Dispersion Relations for ~012 

In order to proceed, one must find and examine the analytic extension of the theoretical 
expansion for ~012 (u) into the upper half of the complex wavenumber (~,) plane. A function 
t~(~) that has a derivative relative to the complex number z at all points within a region of the 
?,.-plane is an analytic function of i within that region (Refs. 45 through 47). The complex 
wavenumber is denoted by 

= ~'R + ipl (48) 

3.1.7.1 Extension of Optical Quantities into the Complex J-Plane 

Landau and Lifshitz (Refs. 22, 35, and 43) have demonstrated that in the upper half of 
the ;,-plane, the extension of index ~j for material j has the following properties: 

I. The ~j are analytic. 

2. The values of ~j on either side of the positive imaginary axis are paired in the 
following way: fij(- ~*) = fi~(~). 

3. As j7 approaches infinity in any direction in the upper-half plane, fij(~,) 
approaches unity. 

4. Along the positive imaginary axis, where fij is real (Property 2), the values 
decrease monotonically from ~j (i0), which is greater than unity, to fij (ioo) = 1 
(Property 3). 

5. The r]j are real only on the imaginary axis. 

From a straightforward application of Property 2 to the extensions into the i-plane of 
Eqs. (4), (8), and (35), respectively, it is found that in the upper-half plane (Ref. 43) 

~j=(- ;,) ^ • _- 1"jrn(P ) 

and 

P) = 

rOl2(- ~*) = l~Ol~(~) (49) 

3.1.7.2 Poles and Zeros of r012 (~) 

Dispersion relations can come from the real and imaginary parts of the closed contour 
integral ~ S(~,)d;,/(~, 2 - u2) (Refs. 7 and 35), which is zero if S(;,) is analytic in the region 
contained within the closed path C lying in the upper half of the u-plane, i.e., 
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S(~ , )d~ , / (~  ,2 - 1,2) -- 0 (50 )  
c 

if S is analytic within path C. It must be insured that C circumvents any poles of S as well as 
= =l= ~, on the real axis. 

In this case, S is chosen along the real axis to be 
i 

~(p) = fn r012 (~) = en ~7o120')l + iO(O (51) 

because interest is in the relationship between the modulus of ~o12, Which can be measured, 
and its phase. The analytic extension of S into the upper-haif plane is formally 

enl rol2(~')l + itb(~,) (52) 

Equation (52) indicates that any pole or zero of rol2(~) is also a pole of S(b). However, 
there are no poles ofrol2 because, in the extension of Eq. (35), i r01(7')r12(~) exp[2i-~l (~)dl] i 
is less than unity everywhere in the upper-half plane (Ref. 7). 

The zeros ~j of r012 (~) can be found by setting the extension of Eq. (35) to zero. With the 
aid of the extension of Eq. (8), the location of the zeros at ~ = ~j are for 

;i ~ [ -  r01(vj)/r,2(;,j)] / [4zi nl(uj) dl] 

(Ln[-ro,(~.i)/rj2(~])] + i .  2pz) 
/ {4:ini<~'i)d, ) (53) 

The Ln function has the principal value of the natural logarithm function, fn, and p is any 
integer. Equation (53) is transcendental, so it cannot be solved for i,j directly. The relations 
are useful, though, in an iterative search for ~j (Section 3.2.3). 

According to Eq. (49), if 

is a zero of r012, - ~j* ffi - J'xj + 
, across the imaginary axis. 

~j -- VRj + i vlj (54) 
^ 

ivlj is also a zero; that is, .the zeros of rol2 are reflected 
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A 

3.1.7.3 Evaluation of  ~ S(~)d~/(~ z - ~,z) = 0 

The closed path of integration, C, (Fig. 9) is basically a quarter circle of radius L and the 
radial lines at each end of the arc which are along the positive real and imaginary axes. The 
path avoids the pole at ~ -- p on the positive real axis with a semicircle of  radius ~, and goes 
around a possible pole of S at ;, - -  i~I0 on the positive imaginary axis with a semicircle of  
radius 0o. There are cuts 7j and 7 land small circles of radius Qj about the Z zeros ~j of  ~'oL2, 
not on the imaginary axis, which are also poles and branch points of S. This choice of  path C 
makes S(~,)/(~- - 1,2) analytic within it. Thus, Eq. (50) may be used, which is 

i ~j 
I 

v 
1 o 

0 
v 

Figure 9. Path C of  contour integration ) S(~)d~/(~ z - p2). 
C 
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= I-  )(pI0d°R + I L + ~ffi0 §[z, + ~exp(ia)]d[Qexp(i~)] 

affir [v + Qexp(ia)] 2 - p2 

i f  I "q 0'Rj + ivl) 2 - v 2 
I 

4- 
+YJ (~nj + iPI) 2 - )'2 

+ !.~jaj=O ~[~,j + Oj ¢xp(ioq)]d[Qjexp(iexj)] I 
ffi 2~r [~j + ojexp( iot j ) ]  2 - v2 

+ I 0=T/2 §[Lexp(iO)]d[Lexp(iO)] 
o=0 [Lexp(iO)]2- ~. 

+ 
j L S(ivDd(ipl) + j 0 S(i~l)d(ivl) 
PIO+o0 Vl 2 4- v 2 PlO-O0 pi 2 -!- p2 

? = - . / 2  S[ipl0 + 00¢xp(io~0)]d[Q0 exp(i(~o)] + 
J 
~=~-/2 [ivI0 + Qoexp(io.o)] 2 - v 2 (55) 

If no zero o f  ro12 appears on the positive imaginary axis, the last three integrals on the right- 
hand side of  Eq. (55) are combined into a single term: 

L S(ivI)d(iJ'l) 

0 pl 2 4- e2 

Now proceed to simplify Eq. (55) by reducing Q and all Qj to zero and letting L approach 
infinity. 

The sum of  the integrals may be written along path segments 7j and 7j' as ~j goes to zero 
as 

l S(Tj)d(b'l) | .  S(7~d(ivl) 

- (PRj + iPL) 2 - 

I 

Plj ~ j d v l  
= - i l  

o (vRj + ivO 2 -  
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= _ iA~j  i q  j ( , 2 j _  , 2 _  I,i 2 _ 2DRj,I)dJ'! 
o ,? + 2 ( d j  + + ; )2  

- i ~ j  I PIj /qj - ~ t a n -  i t a n -  1 
"Rj -- ' 'Rj + ' 

i [ ,12 -t- (,Rj -- ,) 2 (,Rj ÷ ')2 ] I 
- -  -~-en . . . . .  " 

vl] + (PRj + p)2 (Pli - ~)2 (56) 

The quantity ASj = S(Tj) - S(Tj) is the value of  S at a point on 7]' minus the value of  S at the 
corresponding point  on 7j. In general, agj  is not  zero because of  the excursion of  path C 
about the branch point hi, although, in our case, ASj is a constant value (see Section 3.1.7.4) 
and we can remove it from the integrand. 

In the limit as all Qj go to zero, the integrals about all o f  the branch points of  S are zero, 

i.e., 

S[,] + Qiexp(icj)]d[Qjexp(i~])] 
lim 0 !j [pj + Qjexp(i~])]2 _ ~ = 0, j = 0, 1, 2,..., Z (57) 

because S is only logarithmically infinite at ~, = v] (Ref. 35). 

The limit about  the pole ~ = ~, is taken as Q approaches zero and L gets infinitely large: 

S[, + ~exp(io~)] I §[~' + Qexp(ia)]d[Qexp(ic~)] _- i I ° lim do~ 
[,  + 0exp(ict)]2 _ ,2 ~r Q-0 2v + 0exp(io0 

i ~ ' S ( , )  

2J, (5s) 

and that of  the sum of  the first two integrals in Eq. (55): 

, ~ _  ,2 z,+Q ,2 ,2 ---- 0 j ,2 _ ,2 
L--oo (59) 

P indicates the Cauchy principal value of  the integral. 
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Equations (56) through (59) are incorporated when Eq. 
infinitesimally small Q and Qj values and infinitely large L values as 

0 = P !~  g(ul0duR iTS(u) 
u 2 - v 2 21, 

(55) is rewritten for 

{ -- "~p j~ l  ASj tan-1 uxj t a n -  i Ulj 
~'Rj -- p URj + u 

i [ ~lj~ + (URj - u) 2 (PRj + v)2 ] } 
_ T ~  1 • . . . .  Vlj 2 + (PRj + v) 2 (PRj p)2 

~r:2 S[Lexp(i0)]d0 ® 
+ l i m  i ]  + i  I 

L--m 0 Lexp[(i0) - u2/[Lexp(i0)] } 0 

3.1.7.4 Case S(~) ffi en ron(~,) 

In this section, Eq. (60) is evaluated for the choice of §, namely, 

= en ro 2 ( ; )  

S(ivl)dOl 

Ul 2 + u 2 

The change in the value of S along the circular paths about the branch points ~,j is 

A.~j----S(,yj~- S(,yj)---- -- 27ri 

( 6 0 )  

(61) 

for j -- I, 2, ..., Z. The negative sign indicates the clockwise route of  the integration path 
about ~j. 

The integral about the quarter circle of  radius L depends on the limit of the integrand as 
L goes to infinity. Along the real axis the asymptotic behavior of index n of any material is, 
by Eq. (23) for very large PR, 

= --  e + . . .  ( 6 2 )  

where pp is the "plasma wavenumber" defined in Eq. (24). Substituting Eq. (62) into Eqs. 
(4) and (8) and placing that result into Eq. (35), the asymptotic expression of  ~012 for large oR 
is 

r012 (Pit) m [pp~ -k (Ppi -- Up~)exp(i4~'PRdl) + . . . ] / (4P  2) (63) 
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Here, as elsewhere in this report, the subscripts O, 1, and 2 refer to the corresponding media 
in Fig. 8. 

The analytic extension of Eq. (63) is used to calculate the limit of the integrand 
~;[Lexp(i0)]/ILexp(i0) - ~,2/[Lexp(i0)]} for infinitely large L. This is (Ref. 44) 

fn rot2[Lexp(iO)] fn[J,p~/(4L2)] - 2i0 
J i m  Lexp(i0) = l~m® Lexp(i0) 

= 2 e x p ( -  i0) lim L - l f n L - I  
L--ee 

= 0  

Hence, the integral along the arc at infinity is zero, i.e., 

~-/2 [ S[Lexp(iO)] dO 
i 

Jo Lexp(i0) - J,2/[Lexp(i0)] = 0 (64) 

All that remains to evaluate in Eq. (6) is the integral along the positive imaginary axis. To 
do this one must know the behavior of ~'012 on the imaginary axis. 

From the discussion in Section 3.1.7.1 it is known that n0, hi, n2, r01, r12, and 71 are real 
everywhere on the positive imaginary axis, and hence, by Eqs. (8) and (35), so is ~012. Also 
known is that rio is unity everywhere, and nl(ivl) and n2(ipl) are greater than unity for finite 
positive pl. This means 

- 1 < ~'ol(ipl) < 0,  i f  0 _ Pl < Oo (65) 

On the other hand, rl2(iJ, l) can have either sign depending on the difference hi(i J,0 - fi2(ipl). 

It is also true that 

if Pl --> O. 

exp[2i~l(ipl)dl] = e x p [ -  4~rdln,(ipl)pl] --< 1, (66) 

These relations are sufficient to indicate the behavior of ~ot2 on the positive imaginary 
axis. At the origin (~ = i0), the metal index h2 is infinite (Refs. 22 and 43), and i'12(i0).and 
~on(i0) are both equal to - l, i.e., 
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r l 2 ( i 0 )  = r o l 2 ( i 0 )  = - 1 (67) 

At infinitely large vI, the indices approach unity (Property 3 of  Section 3.1.7.1), and 

r o l 2 ( i o o )  = 0 ( 6 8 )  

If nl(ipl) is always less than II2(iJ, l), and rl2(ip) and r012(iPl) never become positive, then 
no finite zero of  [012 can exist on the positive imaginary axis. This case of no zeros seems 
very likely because while nl has a finite value at the origin, n2 is infinite there, and both 
indices decrease monotonically to unity as ~'[ approaches infinity (Property 4). Even if nl 
should become greater than n2 somewhere on the imaginary axis, making ['12 positive at that 
point, rol2 will remain negative as the distance is increased from the origin until ~'01 is the 
negative or rl2exp(-4xJ, ldlrll), which would occur at the first zero point, ~ = b, IO. Other 
zero points may appear even further from the origin with ~012 alternating in sign in adjacent 
intervals between zeros. In any case, the number of zeros on the imaginary axis should be 
very few because n2 is usually greater than nl, and for sufficiently large ~q, the exponential 

decay will dominate t'12 exp ( -  47r~,idlnl). 

If the only finite zero of  iol2 on the positive imaginary axis occurs at p = iJqo, it can be 

written 

ro l2 ( ip l )  = - [~Ol2( ip l ) ] ,  f o r  0 ~ v I <_ r io  

Ir012(ipi) l, for Pl > Plo (69) 

and the integral in Eq. (60) along the imaginary axis is 

O D  e ~  

i P I S(i~,l)d.! i P I en [l"ol2(b,D [d~,i ~" p[o - - m t an -  i 
0 ;,2 + ;,2 0 Vl 2 + p2 p p (70 )  

It turns out that if the only zero of  ~o12 on the imaginary axis is the one always present at 
infinity [Eq. (68)], then the same answer will be derived as when rio = Qo is substituted into 
Eq. (70). In that instance, the arctangent term is - ~r2/(2v). If there are two or more finite 
zeros of ~o12 on the positive imaginary axis, each zero contributes an analogous arctangent 
term which alternates in sign in ascending Pl. 

Now the desired relations, Eqs. (61), (64), and (70), can be written for Eq. (60) for the 
i 

case S = envoi2. When these relations are used, Eq. (60) is 
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0 = P r en [r012(up,) l d,R ~,n)d,n 
O ;,2_ ,2 + iP ; - - - - -  0 u2_ ,2 

+ - -  
2u 2u 

z{ 
~r E t a n -  l Plj - " ;  j=l  u R j -  v t a n -  1 ' l j  

"Rj + " 

_ i en r, '1~ + ( '~ j  - ')~ ('~ + ' )~1 
2 / I"I~ + ( ' R j  + , ) 2  " ( ' R  -- ,)21 J " 

: ~lrol2(i,l) l d,I _ ~tan_, 'I__..~o 
+ iP I,~ + u2 , , (71) 

3.1.7.$ Kramers-Kronig Dispersion Relation for ~u) 

The solution of the real part of Eq. (71) for the phase ~ of rot2 is the Kramers-Kronig 

(KK) relation 

~ 2~ tn [ ~o12(,I0 1 d,R 
~(u) + 2mlr = ~ P  

• 1" O" , ~  -- u 2 

N( ) 
+ 2 E tan- ~ ulj tan- l u~j 

j--I 'Rj -- " PRj -l- u 

r iO 
- 2 tan- i 

u (72) 

m is an integer, and the addit ion of  a multiple of  2x to Eq. (72) does not affect exp(i#~). 

Zeros of  rol2 occur at ~j = ugj + iuij, where uRj, ulj -- 0, and at u = ipi0, at which rio may be 
infinite. Ordinarily the KK relation is used to find ~ f rom the measured values of  the relative 

reflectance R, and for these situations, one substitutes Eq. (46), I r012 ] = (R Ro2) 'a, into Eq. 
(72). 
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There are several items to keep in mind when applying Eq. (72) to experimental data. If 
there are no finite zeros of ~Ol2 on the positive imaginary axis, the substitution )'xo = oo gives 
- ~r for - 2 t an -  1 uxo/u. If there is a multiple number of zeros )'of, where z, oe- I is less than v0t 
along the positive imaginary axis, the summation 2 ~ ( - 1 )  t tan - 1  )'0t / v  should replace 

- 2 t a n -  ~ :'IO/)'. 

One should also add 2~- to the right-hand side of  Eq. (72) for every usj that is less than J,, 
if the principal ~;alue of the arctangent function is used. 

3 . 1 . 8  Subtract ive  Kramers -Kronig  (SKK) Re la t ion  for ~(~) 

The subtractive Kramers-Kronig (SKK) relation for ~ depends upon the phase O(P0) 
found at u = u0 directly from an experiment or computed from the equation 

¢b(vo)= I m [ ~  rol2(Uo)] (73) 

after one enters the values of the optical constants at u0, determined in a separate 
experiment, into Eqs. (4), (8), and (35)(Ref. 19). Usually an experimenter chooses u0 to be in 
a transparent, or nearly transparent, region somewhere in the midst of  the reflectance 
spectrum. As noted before, Ahrenkiel (Ref. 19) has shown the SKK relation to be le~s 
sensitive than the corresponding KK equation to errors introduced by the extrapolations of 
the data which must be made outside the data range. 

3 . 1 . 8 . 1  Der iva t ion  o f  the  SKK Rela t ion  

At the wavenumber Po at which ~) is known, Eq. (72) is 

-2,0 " enl~012(~] d~R 
~uo) + 2 m ~ - = - - P  I 

z( ) 
+ 2 j~l tan-  1 Plj t an-  ~ Plj 

= PRj -- u0 URj + u0 

- 2 tan-  I vl.._.~0 
1,0 (74) 

Equations (72) and (74) can be combined to obtain the SKK relation for ~(u) which is 
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~(,) + 2m. - 2,(,~ - ,2)  P ~o ell Ir012(,R)Id'R , [ ] 

vO 

z[ + 2 j~l tan-  1 vIJ - -  t a n -  1 
---- PRj -- P 

vlj 
vRj+v 

"( .)] - ~o tan- i UlJ tan- i UlJ 
Ulj - u 0 URj + u0 

- 2(tan- I VlO v 
~" vo tan-I ~._~_~ ) (75) 

As was done for the KK relation, Eq. (72) (R Ro2) v~ can be substituted for I~0121. All the 
considerations about possible zeros on the positive imaginary axis which apply to the 
KK relation, also apply to Eq. (75). They appear in 3.1.7.5. 

3.2 LOCATION OF THE ZEROS OF ro12 

The dispersion relations for ~, the phase of ~012, are useless unless the zero points of r012 
are known in the upper half of the i-plane. There are some restrictions on the form that the 
zeros, ~j, of ~012 can have. For instance, in theory, zeros not on the imaginary axis always 
appear in pairs that are symmetric in position relative to the imaginary axis (Section 3.1.7.3). 

In this section, methods are examined for estimating the location of the zeros of ~olz(v). 
The general scheme is to estimate the functional form that optical quantities have on the real 
(us) axis and to use the analytic extension of these forms into the complex ~-plane to 
compute the values of the optical quantities away from the real axis. 

3.2 .1  Finite N u m b e r  o f  Zeros  

Fortunately, the number of zeros of ~o12 is finite because of the forbidden wavenumber 
gap in solid dielectrics and semiconductors (Ref. 48). Near the gap the absorption index of 
the film greatly exceeds the refractive index, and the zeros of ~012 cross into the lower half of 
the complex plane in the manner explained by Lupaskho et al. (Ref. 7). 
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3.2.2 Approximate Values of ~tt and n2 

Good approximation formulas must be available for the media indices rio, ill, and fi2 if 
one hopes to find the zeros of ~012. The assumption is made that medium 0 is a vacuum; 
hence, rio(;') is unity for all complex wavenumbers ~. Thus, approximate functional forms 
only for the film and metal indices, nl and fie, are sought. 

In the preliminary work, the analytic extension of Eq. (40), 

a2 = [I  .-  + ( ;4 ]  (76) 

was used to compute the metal index from the extension of an empirical relation for r02, such 

as Eq. (39), 

r02 (~') = - [0.939 - (4.25 x 10 -s  cm)~,] ~ (77) 

Note that Eq. (77) does not satisfy the relation r02(- ~*) = /'0~(v) in Section 3.1.7.1, and the 
location of the zeros obtained from Eq. (77) are not paired as theory predicts in Section 

3.1.7.2. 

In the remainder of this section approximate expressions will be derived for the optical 
constants of the film, n(~) and k(~). First consider spectral domains where the film causes 
noticeable absorptions of radiation. In the actual wavenumber domains where the film is 
sufficiently absorbing, the film acts very much like a metal, It011 is much greater than 
I rl2exp(2i'yldl) I, and Eqs. (4), (34), and (35) give 

Roi2 = If'o! [2 = [(1 - n) 2 + k2] / [ ( l  + n) 2 + k 2] (78) 

Solving Eq. (.78) for k, 

k-~ {[R012(I + n) 2 - (l - n)2]/[ l  - Rol2]}~ (79) 

from which an approximate k-spectrum can be constructed if crude estimates of n and 
experimental values of R012, are obtained, perhaps, from Eq. (46) using measurements of the 

absolute reflectance R. 

The estimates of the k- and n-spectra can be refined if Eqs. (21) and (79) are incorporated 
in an iterative process. In the .first iteration n may be set to unity which makes Eq. (79) 

become f 
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k == 2R~2/(1 - RoI2) ~ (80) 

These k-values can be inserted into Eq. (21) to find an n -spectrum. Subsequent iterative 
steps can use Eqs. (21) and (79) to find updated k- and n-values. 

There are two major reasons why a film in certain spectral regions may not be 
sufficiently absorbing enough to be represented by Eqs. (78), (79), or (80). First, the 
absorption coefficient k of the film medium may be too small for those wavenumbers. In 
those spectral ranges, setting k to zero and n to the n0-value of Eq. (21) should give good 
results. The second reason for small film absorptions is that the film thickness dl is so small 
that [rl2exp(2i~qdl) is comparable to, or exceeds, I r01l even though the k-values may be 
large for those wavenumbers. The construction of approximate k- and n-spectra is 
somewhat more difficult in those spectral domains because a researcher must make more 
assumptions about k and dl. A test of  Eqs. (79) and (80) was conducted with theoretical 
spectra, and results are discussed in Section 3.2.3. 

As an approximation to the analytic extension of the index of the film, one can use 

fii (;") = [el(~')] ~ (81) 

where the dielectric constant of the film is (Ref. 31) 

N 
~I (~) ---- eO =I= p~=l aP (u2 - b 2 _  ibp~,)-I 

(82) 

It is noted that ~0 and the positive constants ap and bp can be found from the approximate 
k-and n-spectra of  Eqs. (79) and (21), by computing ~l(v) from 

el (v) = [n(v) + ik(p)] 2 (83) 

then fitting ~l(v) to the form that Eq. (82) has along the real axis, i.e., when ~ = v. 

3.2.3 Test of  an lterative Method to Find the Zeros 

Equation (53) has been incorporated in an iterative method of locating the zeros of roi2. 
For each value of the index j, the iterations are started by inserting into Eq. (53) the r01, rl2, 
and th values computed at an initial,guess vj(0) of the zero, ~,j, thus, getting a new value, 
~jO). New values of r01, r12, and rq at ~jo) are computed to reinsert into Eq. (53) for the 
second iteration. The iterations are repeated until the moduli of successive iterative ~,j values 
differ by less than 10-12 or a maximum number of iterations is completed. 
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The method for convergence was tested using theoretical spectra for the film and metal 
indices nl and n2. 

A theoretical film index nl was calculated from Eqs. (81) and (82). The choices for the 
parameters of  Eq. (82) were e0 = 1.5 + i0, N = 2 (the number of  absorption bands), at 
= a2 ffi 3.0 x 10 s cm -2, Ul -- 2000 c m-  I u2 = 3000 cm-  1 and bl and b2 = 10 cm-  1. It is 
noted that n2(~') was obtained from Eq. (76) by using relations similar to Eq. (77) for r02(~,). 

In the test of the iterative algorithm, the initial guess u(0) was set to be the origin, film 
thickness (d0 values varied from a 0.1 to 10/an, and the integer j progressed over the values 
0, _+ 1, + 2, ..., until the converged value of [uRj[ exceeded 10000 c m - i .  Calculations were 
stopped there because zeros with real parts that are far from the data wavenumber range give 
a nearly constant contribution to the phase in Eqs. (72) and (75), and their exact locations 
would not be important in a typical experiment. 

In nearly every instance, a converged value of  ~,j was found which, when substituted into 
the analytic extension of Eq. (35), yielded a value of r012(~') whose real and imaginary parts 
differed from zero by less than 10 -6. In one calculation, j was 0, and the convergence was 
not as good, but the computed zero was nearly identical to that for j = - I. In all of the 
other exceptional cases, the j-values were negative or zero, and the converged zero values 
were in the second quadrant or the lower half of the complex plane. Zeros in the first 
quandrant did not seem to be missing. 

Theoretically, the zeros of ~012 should appear in pairs reflected about the imaginary axis 

(Section 3.1.7.2), but, as was pointed out in Section 3.2.2, the use of an empiricial relation 

for ~o2, such as Eq. (77), will destroy this pairing. In fact, when Eq. (77) is used one obtains 

an approximate pairing of the zeros. However, when ro2(~') - -0.9, so that r02(-~'*) 

= r01~(u*), the converged values of the zeros were paired according to ~,j = - ~,_~. 

The same hypothetical spectra were also used to compare the approximations for the film 
absorption coefficient k [Eqs. (79) and (80)] to the theoretical values. For hypothetical film 
thicknesses I ~m or greater, there was agreement to at least four significant digits of the 
theoretical k-values with the same values estimated by Eq. (79) in the strong absorption 
regions. Under the same conditions, the values found by Eq. (80) were within 30 percent of 
the theoretical values. As expected, the agreement worsened in weaker absorption regions or 
for smaller film thicknesses because the conditions under which Eqs. (79) and (80) were valid 
were not met (Section 3.2.2). 
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3.3 COMPUTER PROGRAM SKKREFL 

The authors are now engaged in writing and testing computer program SKKREFL for 
the SKI( analysis of experimental reflectance values of  a single-film thickness when the beam 
is normally incident in a vacuum upon a thin film deposited on a metal substrate. The three 
major segments of the program, MAIN, KAMKON, and NLNSYS, are essentially the same 
as the corresponding segments of  the program SKKTRANS which has successfully analyzed 
transmittance data for a single-film thickness (Section 2.2). 

KAMKON does the numerical integration necessary to evaluate the SKK dispersion 
relation [Eq. (75)] for the phase ~) of  [012 at a given wavenumber. 

NLNSYS uses the experimental value of  ~012 that KAMKON finds from Eqs. (46) and 
(47). It is identical to the segment of  the sarfie name in SKKTRANS, as is the coding needed 
to choose the most likely, or "bes t"  pair of  n- and k-values should the algorithms yield more 
than one pair (Section 2.2). 

It may be necessary to revise the film optical constants, n and k, obtained from NLNSYS 
because the algorithm in MAIN which locates the zero points of  rol2 uses approximations to 
these constants. The program can use the n- and k-values found in NLNSYS in a search for 
revised zero locations and compare them with those found originally in MAIN. If a revision 
is necessary, SKKREFL can redo, one or more times, the steps in KAMKON and NLNSYS 
with updated data from the previous pass. 

At present, program SKKREFL is not completely assembled or fully tested. However, 
many of its algorithms have worked successfully in other programs previously written, and 
the method of finding zeros of ~012 has passed all of  the tests to date. 

4.0 THE MULTIPLE-FILM THICKNESS METHOD: PROGRAM RENLIN 

Computer program RENLIN was written to analyze the normal reflectance of a beam 
incident upon a film deposited on a metal substrate over several film thicknesses. RENLIN 
yields the complex index of the film material, nl, which, it is assumed, does not depend on 
film thickness. The method of analysis is based on the model contained in Eqs. (4), (8), and 

(34) through (44). For the model, it is noted that at a certain wavenumber, the film indices n 
and k, and all other parameters, are constant by assumption during an experiment. 
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RENLIN fits the experimental reflectance values of two or more film thicknesses at a 
given wavenumber to the model of Eqs. (4), (8), and (34) through (44). The fitting procedure 
is the nonlinear least-squares algorithm of Marquardt (Ref. 8), and the fitted parameters are 
n and k of the film material. Except for the equations representing the model and some 
modifications of the data input procedures, RENLIN is identical in coding to TRNLIN, the 
program that fits experimental transmittance values of thin films used in Ref. I. It is 
recommended that the present version of the nonlinear least-squares algorithm in program 
segment NLIN, which is a part of both of the RENLIN and TRNLIN programs, be revised. 
The coding of this algorithm is in single-precision arithmetic, whereas all the other 
algorithms use double precision. It also happens to be very confusing to follow. The main 
reason for the proposed revision of NLIN, however, is to improve its efficiency. Least- 
squares algorithms tend to be costly procedures involving minutes of CPU time and 
kilobytes of memory. Huber (Ref. 49) has recently discovered a new "extrapolated least- 
squares optimization" method that typically reduces the number of iterative steps to about 
half that of the conventional algorithms. The method is actually a slight modification of the 
present algorithm in NLIN and would improve each of the present iterative steps. 

5.0 CONCLUSIONS 

The lifetime of space satellites is often directly related to contamination of critical optical 
surfaces by condensed gas films. A basic property required for determining optical 
contamination effects is the complex refractive index of the gas film. Results of efforts to 
develop mathematical models and computer programs for the determination of the complex 
mathematical models and computer programs for the determination of the complex 
refractive index from optical transmittance and reflectance measurements are presented in 

this report. 

In previous work (Ref. 1), the program TRNLIN has been used successfully to determine 
refractive index values using experimental transmittance data for multiple-film thicknesses 
of condensed gases. The program RENLIN has been written to analyze the normal 
reflectance of a beam incident on a film deposited on a metal substrate over several film 
thicknesses. RENLIN yields the complex index of the film material which is assumed not to 
depend on film thickness. Except for equations representing the reflectance model and some 
modifications of the data input procedures, RENLIN is identical in coding to TRNLIN. 

Detailed descriptions of two new programs to determine the coml?lex refractive index 
from experimental measurements of a single-film thickness are presented. The advantage of 
this model is that the assumption used in previous models that the optical properties of a 
dielectric film are independent of film thickness is not required. The program SKKTRANS 
utilizes a new subtractive Kramers-Kronig algorithm which gives highly reliable index values 
from measurements of the absolute transmittance of a single uniform thin film deposited on 
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a uniform thick substrate. This program reduces the number of necessary experimental 
measurements and is capable of noting any differences in the optical constants of the film 
material due to changes in film thickness. A theoretical CO2-cryofilm transmittance 
spectrum was used to test the algorithms in SKKTRANS. Excellent agreement was found 
between calculated and original index values. From the results of the SKKTRANS program 
and the transmittance dat~ taken previously from an N2/CO2 mixture, it was observed that 
the absorption index determined through the SKKTRANS program increased with 
thickness. Further investigation is required to determine whether this trend is a real physical 
effect or a computational artifact. This same effect was observed for other gas mixtures. The 
values computed for individual thickness using SKKTRANS were in close agreement with 
those obtained with TRNLIN and multiple-film thicknesses. Also the program SKKREFL 
was derived for determining n and k using subtractive Kramers-Kronig technique from 
experimental reflectance data for a single-fiim thickness. This program is not completely 

assembled and has not been fully tested. 
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